If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=220
We move all terms to the left:
x^2+x-(220)=0
a = 1; b = 1; c = -220;
Δ = b2-4ac
Δ = 12-4·1·(-220)
Δ = 881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{881}}{2*1}=\frac{-1-\sqrt{881}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{881}}{2*1}=\frac{-1+\sqrt{881}}{2} $
| 18-3x+2=x-12 | | 2.3h=-13.8 | | (15q+18)+3q=180 | | x+3.2=-5.9 | | 2=u-83/8 | | .65x=5+.45x | | 62+82=c2 | | 5q+18=180 | | 3(3–2g)=4g | | 11c+47=157 | | 16t−4t=72 | | 5×1,4+0,4y=7+2y | | 8x-3x+1=26 | | 0.8+a=2.1 | | 4(x+9)+10=22 | | (x+5)(2x+7)-(x+5)(x-3)=(x+5)(x+10) | | 26=2x−4 | | (3+y)=27 | | 10^(x-4)=100 | | 2(5x-23)=x+17 | | -2k+5k=-9 | | X^2-5x+6=P(x) | | (5x+2)=(10x+4) | | -3a-a=4 | | x+3=82 | | c-1=-1 | | -3p-p=-4 | | 5v-4v=0 | | 6c-4=32 | | F(t)=212-6•140 | | 2(8b-4)=40 | | Xx18=35 |